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Abstract
Kinetic equilibrium reconstruction plays a vital role in the physical analysis of plasma stability
and control in fusion tokamaks. However, the traditional approach is subjective and prone to
human biases. To address this, the consistent automatic kinetic equilibrium reconstruction
(CAKE) method was introduced, providing objective results. Nonetheless, its offline nature
limits its application in real-time plasma control systems (PCSs). To address this limitation, we
present RTCAKENN, a machine learning model that approximates 7 CAKE-level output
profiles, namely pressure, inverse q, toroidal current density, electron temperature and density,
carbon ion impurity temperature and rotation profiles, using real-time available inputs. The deep
neural network consists of an encoder layer, where the scalars and interdependent inputs such as
plasma boundary coordinates and motional Stark effect data are encoded using multi-layer
perceptrons (MLPs), while profile inputs are encoded by 1D convolutional layers. The encoded
data is passed through a MLP for latent feature extraction, before being decoded in the decoding
layers, which consist of upsampling and convolutional layers. RTCAKENN has been
implemented in the DIII-D PCS and our model achieves accuracy comparable to CAKE and
surpasses existing real-time alternatives. Through clever dropout training, RTCAKENN exhibits
robustness and can operate even in the absence of Thomson scattering data or charge exchange
recombination data. It executes in under 8 ms in the real-time environment, enabling future
application in real-time control and analysis.
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1. Introduction

One crucial aspect in the physical analysis of plasma stabil-
ity and transport in tokamaks involves the reconstruction of
magneto-hydrodynamic (MHD) equilibria [1, 2], for instance,
through methods like EFIT [1]. Not only the internal plasma
pressure and magnetic field structure but also magnetic flux
coordinates can be provided for detailed physics calculations
throughMHD equilibrium reconstruction. In particular, accur-
ate plasma equilibria are required for 3D MHD stability ana-
lyses, such as JOREK [3], DCON [4] and STRIDE [5]. When
only magnetics are included, the plasma shape can be robustly
and accurately reconstructed, while internal plasma profiles
remain unconstrained. Recently, many tokamaks have been
reconstructing more accurate kinetic equilibria based on vari-
ous diagnostic signals, such as motional Stark effect (MSE) [6,
7], Thomson scattering (TS) [8], charge exchange recombin-
ation (CER) spectroscopy [9], and high-fidelity physical cal-
culations, such as NUBEAM [10] (a Monte Carlo package for
evaluation of the deposition, slowing down, and thermalization
of fast ion species in tokamaks) and NEO [11] (a multi-species
drift-kinetic solver tool for high accuracy neoclassical calcula-
tions), to constrain the internal plasma information. However,
the fitting process from noisy multiple diagnostic signals can
be affected by researchers’ subjectivity, and a considerable
amount of iterative computation with NUBEAM and EFIT is
required, resulting in high-cost time consumption for research-
ers. Therefore, the Consistent Automatic Kinetic Equilibria
(CAKE) workflow has been developed to minimize research-
ers’ subjectivity during the process and perform efficient kin-
etic equilibrium computations for many discharges [12]. This
enables statistical stability analysis for various discharges and
provides initial input for manual fine-tuning of kinetic equi-
libria. Furthermore, it demonstrated the concept of fully auto-
mated reconstruction that can be applied to plasma predic-
tion and control. Recently, studies on real-time plasma profile
prediction [13], control [14, 15] and profile-based instability
avoidance [16] have been initiated. Real-time capable kinetic
equilibrium reconstruction technology will further advance
plasma profile-based prediction and control. However, the cur-
rent CAKE workflow still requires a large amount of iteration
with NUBEAM, NEO, and EFIT computations, which take at
least several minutes if not hours per each time slice, limiting
its application for real-time control.

Recently, machine learning (ML)-based acceleration tech-
niques have been applied to various tokamak physics
calculations [17, 18]. With ML, it is possible to quickly gen-
erate kinetic equilibria through an end-to-end approach from
various plasma diagnostic signals. This study aims to develop
a fast kinetic equilibrium reconstruction tool suitable for real-
time prediction and control, by training ML models with kin-
etic equilibrium data for tens of thousands of time slices recon-
structed through the CAKE workflow. The remainder of this
paper is as follows. In section 2 we discuss input selection,
the ML model architecture and training. The implementa-
tion of RTCAKENN in the DIII-D plasma control system
(PCS) is presented in section 3, followed by experimental

demonstrations in section 4 where we highlight model accur-
acy, robustness and timing.

2. ML modeling: RTCAKENN

The input information that kinetic equilibrium reconstruction
requires can be divided into four categories based on their
dimensions and interdependence. The first category includes
scalar independent variables, such as toroidal magnetic field
strength and plasma current. Second, there are scalar inter-
dependent variables, the pitch angles of the internal magnetic
field lines measured by MSE. The third one consists of one-
dimensional signals of plasma pressure and current density (or
safety factor, q) profiles obtained from real-time EFIT used
as initial conditions, as well as electron density, electron tem-
perature, ion temperature, and ion rotation frequency profiles
measured through TS and CER. Here, the toroidal ion rotation
frequency (Ωtor) refers to the angular frequency (Ωtor = 2πf tor),
where f tor is the general rotation frequency in Hz. Lastly, two-
dimensional coordinate information of the plasma boundary
obtained through magnetic measurements and real-time EFIT
is also necessary (throughout this work real-time EFIT refers
to the version that only relies on magnetics, no kinetic data).
These pieces of information have different dimensions, and
even within the same dimension, they have different spatial
resolutions depending on the diagnostic system used. The out-
put signals calculated from this multimodal information are
the profiles of plasma pressure, safety factor, current dens-
ity, electron density, electron temperature, ion temperature,
and ion rotation velocity, which satisfy the kinetic MHD equi-
librium. Here, we decided not to include higher-dimensional
information such as 2D magnetic flux surfaces in the output.
This omission was not due to any incapability but rather was a
strategic choice to avoid computational time delays, especially
considering that it is of lesser significance from the control per-
spective, the primary aim of real-time analysis. Moreover, it is
worth noting that this 2D flux surface information is inherently
embedded in the remaining outputs, and during offline ana-
lysis, it can be mapped one-to-one using the Grad–Shafranov
equation. Note that throughout this paper, whenever we refer
to j or the current density profile, the flux surface averaged
toroidal current density is meant. Additionally, in the CAKE
code, all ‘ion’ quantities actually represent the C6+ ions. The
carbon impurity temperature is employed as an analogue to the
bulk temperature. It is important to note that while this approx-
imation serves well for the central region, it may not accurately
represent the ion temperature at the plasma edge. To mitigate
this limitation, CAKE excludes edge measurements of C6+
temperature and instead utilizes an assumption of Ti

Te
(bulk ion

temperature to electron temperature) ratio ‘stiffness’ to extra-
polate the bulk ion temperature in the edge region. This extra-
polation ensures a more comprehensive representation of ion
temperatures throughout the plasma. Similarly, the rotation
profile fit is determined based on impurity ion data as well.
More detailed information about the inputs and outputs can
be found in table 1. In this study, the deep neural network
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Table 1. Input and output signals for the multimodal neural network.

Inputs Description Source Mean/Std

Bt Toroidal magnetic field strength (T) Magnetics 0.242/1.95
Ip Plasma current (A) Magnetics (1.04/0.280) × 106

γi Magnetic field pitch angles i MSE 0.104/7.29
(R, Z) R and Z of plasma boundary (m) RT-EFIT (1.55/0.414,

−0.0314/0.707)
p Pressure profile (Pa) RT-EFIT (2.69/2.37) × 104

q Safety factor profile RT-EFIT 2.78/2.34
ne Electron density profile (1019 m−3) TS 4.06/1.86
Te Electron temperature profile (keV) TS 1.52/1.02
T i Ion temperature profile (keV) CER 1.66/1.11
Ωtor Toroidal rotation frequency (kHz) CER 38.1/28.3

Outputs Description True result Mean/Std

p Pressure profile (kPa) CAKE 22.3/22.4
j Current density profile (MA m−2) CAKE 0.642/0.660
q Safety factor profile CAKE 1.01/5.18
ne Electron density profile (1019 m−3) CAKE 3.72/1.96
Te Electron temperature profile (keV) CAKE 1.31/1.02
T i Ion temperature profile (keV) CAKE 1.49/1.23
Vtor Toroidal rotation velocity (km s−1) CAKE 67.6/52.6

Figure 1. Neural network architecture for multimodal prediction of kinetic equilibrium profiles.

architecture depicted in figure 1 is used to generate the desired
output information by taking in multiple inputs of different
dimensions.

The signals diagnosed in a tokamak have different dimen-
sions and resolutions, and it is necessary to map these sig-
nals to consistent sets of coordinates for input feeding into
a neural network, as shown in figure 1(a). To do this, sev-
eral preprocessing steps are required to obtain the input sig-
nals during model training and inference. First, RT-EFIT cal-
culations are required for the plasma boundary coordinates and

MHD pressure and safety factor profiles in the input signals.
Note that the results from RT-EFIT are also used as the initial
guess state for iterations in manual kinetic equilibrium recon-
struction. In this study, the resolution (N in figure 1(a)) of
the plasma boundary coordinates estimated by RT-EFIT was
set to N = 8. Therefore, eight (R, Z) coordinate values at the
innermost, outermost, top, bottom, and middle-index points
were used as input. Additionally, RT-EFIT provides the pol-
oidal magnetic flux, ψN, which is the domain coordinate for
1D input signals. Subsequently, the kinetic profiles diagnosed
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through TS and CER are mapped to this ψN coordinate during
the preprocessing step.

Then, the preprocessed input signals are fed into the neural
network model, as shown in figure 1(b). First, the magnetic
pitch angles diagnosed by MSE are interdependent scalar
values, and they are encoded by a multi-layer perceptron
(MLP) in the model. The 2D plasma boundary (R, Z) coordin-
ates, which are also composed of interdependent values, are
encoded by another MLP. The kinetic profile signals of plas-
mas are 1D information mapped to the magnetic flux coordin-
ate, ψN. Considering their dimensional characteristics, they
are encoded by 1D convolutional layers for effective feature
extraction. The signals of magnetic field strength and plasma
current are already small-size independent variables, so they
are concatenated with other encoded information without
additional encoding.

After the encoding process, the comprehensive latent fea-
tures are extracted from the concatenated information of
encoded signals byMLP (figure 1(c)). Lastly, from these latent
features, the final kinetic profiles that satisfy theMHD equilib-
rium are generated by decoder networks shown in figure 1(d)
comprising upsampling and convolutional layers. The final
output profiles are composed of seven 1D features described in
table 1. The detailed description of the neural network archi-
tecture is shown in appendix.

For training the neural network, we used the kinetic equi-
libria reconstructed via CAKE [12], which are stored in the
OMFIT database [19]. The dataset contains a total of 696 dis-
charges at 18 959 time points. The dataset did not get biased
or focused on specific scenarios and as such includes L-mode
and H-mode plasmas as well as instances with ITB or hybrid-
like scenarios. CAKE can occasionally generate outlier res-
ults due to low-quality diagnostics. Therefore, we filtered
out excessive outliers that are not in the typical operating
region of DIII-D. Filtering out outliers is an automated pro-
cess that involves excluding cases that surpass pre-specified
limits, and this is carried out before the model’s training.
The mean and standard deviation values for the filtered data-
set are listed in table 1. Here, the toroidal magnetic field
(Bt) in inputs, and the current density (j) and safety factor
(q) in outputs are signed quantities according to their direc-
tion, which leads to the mean values being smaller than the
standard deviation values. Additionally, as the safety factor
q can diverge to infinity at the boundary of diverted plasma,
we utilized the inverse of the safety factor, 1/q, for numer-
ical convenience. We used Adam [20] as the optimizer and
set the loss function to mean squared error for optimizing
the model. To reduce the risk of overfitting, we implemen-
ted the early-stopping method, which relies on the validation
loss. Additionally, we created an ensemble model by employ-
ing ten different models with identical architectures [21].
By using this approach, the outputs of each internal model
are averaged, leading to smoother profiles and the algorithm
becomes more robust against outliers from individual models.
The training of these models was performed using the Keras
API [22], and the trained Keras model was converted to C

code using the Keras2C library [23] for implementation on
DIII-D PCS.

In actual tokamak experiments, there are often cases where
TS and CER diagnostics are not available or have low reliab-
ility for various reasons. Employing imprecise diagnostics or
estimated profiles to reconstruct kinetic equilibria may result
in unrealistic and inconsistent outcomes. One of the goals of
this study is to obtain reliable kinetic equilibrium even in the
absence of some diagnostic signals. To achieve this, during the
input feeding process when training the model in figure 1(a),
we employed a dropout technique on TS or CER input data
with a rate of 0.1. For this dropout, the input data is set to
zeros or randomly determined within the normal operation
range with a half-and-half probability. This way enables the
model not to overly rely on the TS and CER inputs when
estimating the final kinetic equilibrium. With this approach,
the trained model can infer missing signals from the remain-
ing signals when TS or CER signals are absent or unreliable in
actual tokamak experiments. This inherently assumes that the
different profiles are sufficiently interdependent, allowing for
the estimation of missing information based on the available
information. For example, in the absence of TS diagnostics,
we may not have direct inputs for electron density and elec-
tron temperature, but we can provide ion temperature, pres-
sure profiles, and q profiles. The pressure and ion temperature
can offer indirect information on the possible ranges of elec-
tron density and temperature, and also allow us to estimate
the electron temperature gradient regulated by ion temperature
gradient turbulence. The q profiles and rotation profiles also
provide additional support for electron confinement. Similarly,
in the absence of CER, indirect information can be provided
in the reverse direction. While the profiles estimated from the
remaining inputs may have differences from actual profiles, it
is a reasonable approach to estimate equilibrium profiles when
some diagnostic data is unavailable during actual operation.
The input dropout technique also helps prevent the overfitting
of the model. Additionally, by keeping the input dropout rate
low (0.1), we intended to allow for the utilization of actual
input signals when they are available.

Figure 2 presents regression plots of the output variables
computed using the trained model (upper) and distributions
of the corresponding errors (lower). The test data shown in
figure 2 are composed of 1334 time-slices and have not been
used in training. Note that during this test regression, the input
dropout was not applied. Panels (a)–(g) represent the output
variables listed in table 1. The Pearson R metrics, serving as
indicators of accuracy between the true and predicted values,
are also displayed on the regression plots. The average value
of R across the seven profile predictions is 0.972, and even the
lowest value is above 0.93. The lower plots in figure 2 show the
distributions of relative errors, (ypred − ytrue)/|ytrue|avg, with the
half width at half maximum (σ) values also indicated. Except
for rotation prediction, an accuracy of σ ≈ 5% is achieved.
Further detailed comparative analysis with CAKE and real-
time alternative reconstruction will be discussed in subsequent
sections.
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Figure 2. Regression plots for the test dataset and error distributions using the trained model. (a) Plasma pressure, (b) current density, (c)
inverse of safety factor, (d) electron density, (e) electron temperature, (f ) ion temperature, and (g) toroidal rotation velocity.

3. RTCAKENN implementation in DIII-D PCS

RTCAKENN utilizes inputs from several diagnostic systems
with varying data refresh rates, necessitating a systematic
approach. In each cycle, RTCAKENN actively requests the
most recent dataset from each source.

In real-time, the essential input scalars such as plasma cur-
rent (Ip) and toroidal magnetic field (Bt) are measured by
Rogowski loops and toroidal field probes, respectively. Here,
Bt is the value at the plasma center, R= 1.67 m. The real-time
implementation of EFIT (RT-EFIT) provides plasma boundary
coordinates (R, Z), and pressure and q profiles.

Additionally, the real-time MSE algorithm supplies the
input MSE data, which comprises 15 channel measurements.
To capture electron temperature and density, the RT Thomson
algorithm is utilized, which can extract Thomson data from
three systems: ‘Core’, ‘Horizontal’ (formerly referred to as
‘Tangential’) and ‘Divertor’ [8, 24–26]. RTCAKENN utilizes
data from the Core and Horizontal Thomson systems. Finally,
CERREAL, the real-time CER algorithm, provides ion tem-
perature and rotation data [27]. CERREAL can transmit data
from two distinct systems.

Given the diverse sources of input data that exist, includ-
ing measurements of the same quantity but at different spatial
locations, data arrival times during the real-time execution of
RTCAKENNmay vary. Therefore, striking a balance between
computational complexity, robustness of outputs, and accur-
acy becomes crucial. In this study, we adopt an approach that
utilizes the most recent valid data for each input. This minim-
izes computational complexity compared to methods such as
ringbuffers. Furthermore, all operations are consistently per-
formed on data of the same shape, enhancing the algorithm’s
robustness. While there is a potential for RTCAKENN to
utilize outdated data if a specific diagnostic stops providing
information for the rest of the discharge, our contention is that
employing real data from an earlier phase in the shot typically
results in a closer alignment with the current data, compared
to using a set of zeros. Therefore, we have chosen to adopt the
former approach.

During each PCS cycle, RTCAKENN attempts to acquire
new data. For each input quantity (excluding plasma boundary

coordinates), we consider the new data valid if the values
for a specific quantity do not surpass our outlier detection
thresholds or contain clean zeros or other non-validity flags
specific to the algorithm.

The normalized flux coordinates accompanying the raw
input profile data (electron temperature and density, ion tem-
perature, and toroidal rotation) typically undergo changes over
time. As discussed in section 2, RTCAKENN is trained to
receive these profiles on a uniform grid with a constant range
of 0 ⩽ ψN ⩽ 1, encompassing 33 points. To accommodate
this requirement while minimizing imposed structure and con-
straints, we interpolate each profile to this 33-point grid using
linear interpolation. Coincidentally, the profiles received from
RT-EFIT already exists on a uniform 65-grid, so these profiles
only have to be downsampled and interpolation is not required
here.

4. RTCAKENN experimental demonstrations

The core objective behind developing RTCAKENN is to
facilitate routine real-time access to essential kinetic pro-
files for both control and analysis purposes. Unlike a power
plant operating with a fixed plasma configuration and a
set of diagnostic measurements, successfully implementing
RTCAKENN in a research reactor environment poses chal-
lenges due to potential scenarios where not all input dia-
gnostics are available. Creating separate neural networks for
each potential combination of missing diagnostics is theoret-
ically plausible. However, this method significantly increases
the computational time necessary to execute the algorithm.
Thus, our preferred approach involves training a set of mod-
els using data dropouts as mentioned before, allowing the
neural network to display resilience against diagnostic fail-
ures. It is important to emphasize that while initial testing
offers an initial performance indicator, the comprehensive ana-
lysis requires demonstrations in real-time using real plasma
discharges.

In summary, the primary goals of the initial RTCAKENN
experiments involve demonstrating prompt execution,
algorithmic robustness, and accuracy.
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Figure 3. Comparison of reconstructed pressure and current density profiles between RTCAKENN and state-of-the-art CAKE as well as
existing real-time alternatives. Here a single discharge is used, with four timeslices spaced apart by 500 ms.

4.1. Accuracy

In this section, we present the analysis of the real-time outputs
generated by RTCAKENN during experiments, comparing
them to the offline CAKE profiles and existing real-time
alternatives at DIII-D. Our focus lies on the crucial equi-
librium reconstruction profiles, namely the pressure and tor-
oidal current density profiles. We also evaluate and discuss the
accuracy of the remaining kinetic profile outputs provided by
RTCAKENN.

4.1.1. Equilibrium pressure and toroidal current density
profiles. Figure 3 showcases four distinct timeslices within
a single shot, with each timeslice separated by a duration of
500 ms. Each row corresponds to one of these timeslices.
The CAKE profiles, represented in crimson, include the asso-
ciated uncertainty. The indigo curves illustrate the pressure
profiles generated by RTCAKENN, while the green curves
depict the real- time alternatives. The real-time alternative
pressure profile is provided by RT-EFIT (EFITRT2, the kinet-
ically constrained version). Although PCS does not currently

offer a toroidal current density profile, we can derive such
profiles using the data provided by RT-EFIT, thus enabling us
to present derived profiles for analysis.

Here, the R values between the RTCAKENN prediction
and the CAKE ground truth for the examples in figure 3 are
R(p) = 0.9971, 0.9944, 0.9884, 0.9897, and R(j) = 0.9855,
0.9896, 0.9902, 0.9898 for t = 2200, 2700, 3200, 3700 ms,
respectively. The median R values for each timeslice in the
testset data were found to be R(p)= 0.9968 and R(j)= 0.9950.
This means that the examples in figure 3 are close to the
median of the data or slightly worse prediction cases, and they
are not biased cases chosen specifically to showcase excep-
tionally good results.

The pressure profiles generated by RTCAKENN exhibit
remarkable similarity to the CAKE profiles, particularly in
the pedestal region, as prominently highlighted in the pedes-
tal plots in figure 4. In the core region, where uncertainty in
the CAKE profile is more pronounced, RTCAKENN shows a
slightly greater deviation, albeit mostly within the uncertainty
band provided byCAKE. Conversely, the real-time alternative,
obtained from RT-EFIT, manages to approximately match the
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Figure 4. Zoomed in plot comparison of reconstructed pressure and current density profiles between RTCAKENN and state-of-the-art
CAKE as well as existing real-time alternatives. Here a single discharge is used, with four timeslices spaced apart by 500 ms.

CAKE profiles, yet significant disparities become apparent in
the pedestal region, as illustrated in figure 4. It is important to
clarify that CAKE provides uncertainty information primar-
ily for pressure profiles. The EFIT code, which is integrated
into the CAKE analysis, does not accept uncertainty orweights
on a per data point basis for current constraints. EFIT handles
current constraints internally, and the level of detail and pre-
cision in assigning uncertainties to individual current density
data points is limited. Regarding the pressure uncertainty, it is
essential to note that these uncertainties are propagated from
the fitted profiles such as the electron- and ion temperature
profiles and others. By employing Monte Carlo methods, the
uncertainties in the resulting profiles are estimated. However,
an exception to this practice is the fast ion pressure estimate
provided by ONETWO, for which relatively large assumed
uncertainties are typically applied.

The current density profiles produced by RTCAKENN
demonstrate overall good agreement with the CAKE profiles
for each of the analyzed timeslices. RTCAKENN reasonably
captures the width, height, and position of the bootstrap peak.

RTCAKENN seems to consistently significantly outperform
the accuracy of the derived profiles from EFITRT2 with
default settings.

4.1.2. Kinetic profiles. Figure 5 contains the five remaining
outputs of RTCAKENN for timeslice t = 2200 ms in dis-
charge #196117. For the real-time alternatives, the following
data are used: the inverse q-profile is obtained from EFITRT2,
the version of RT-EFITwith kinetic constraints. The remaining
profiles are obtained from the real-time fitting algorithm (an
algorithm that uses model functions to fit real-time CER and
TS profiles). For this comparison, a post-shot playback simu-
lation was done of #196117 (and saved into #965973) because
the fitting algorithmwas not configured by us for these specific
experiments. Nevertheless, the stand alone simulations give
some insight in what the quality could have been if turned on.
Finally, the fitting algorithm outputs a rotation profile in kHz
rather than in km s−1, so for this comparison we multiply the
profile by a factor of 2, as the average R location of the CER

7
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Figure 5. Comparison of reconstructed inverse q, electron density, and temperature, impurity ion temperature and toroidal velocity profiles
between RTCAKENN and state-of-the-art CAKE as well as existing real-time alternatives. Here a single timeslice is shown. The raw
Thomson data from the horizontal and core systems from the most recent time slices are depicted by orange and blue crosses respectively,
while the most recent raw CER data from the core system is represented by black crosses.

Figure 6. An infrequent occurrence of artificial oscillatory spline fitting in CAKE, resulting from the inclusion of data from multiple time
slices per CER view chord, affecting the velocity profile.
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Figure 7. An example of the inputs available to RTCAKENN during plasma discharge #195928. Unfortunately, RTCAKENN did not
receive the correct ψN values associated with the data; this was due to a code bug that resulted in all TS data being assigned an identical
value for ψN, resulting in erroneous constant curves after interpolation.

chords used is roughly 2m. It is understood that technically the
CER data had to be divided by the R location prior to fitting,
but that is beyond the scope of this paper.

For the five different target profiles, the prediction
by RTCAKENN aligns well with the CAKE baseline in

figure 5. RTCAKENN demonstrates higher accuracy than
the RT alternative in both the core and edge regions, par-
ticularly in predicting electron and impurity ion temper-
atures, which were previously challenging for real-time
reconstruction.

9
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Figure 8. An example of the outputs generated by RTCAKENN during plasma discharge #195928 in the absence of proper Thomson
scattering data. Despite this limitation, RTCAKENN still provides qualitatively accurate physical profiles.

Especially, the toroidal velocity profile of RTCAKENN
matches reasonably well with CAKE, and differs substan-
tially from the RT alternative (although limitations to this
comparison have been previously mentioned). The dispar-
ity between RTCAKENN and CAKE results may be attrib-
uted to specific edge cases where the CERREAL cycle rate
exceeds its typical speed, while the plasma has not yet stabil-
ized into a steady state. In these exceptional instances, CAKE
can accumulate data over multiple time slices, causing the
raw data for each chord to exhibit diagonal movement, as
shown in figure 6. The spline fit applied to this data some-
times generates an artificial, oscillatory pattern. It is important
to note that such scenarios are rare, and we plan to conduct
a more comprehensive analysis of these cases in our future
work.

Overall, the accuracy as observed through manual inspec-
tion of timeslices in real experiments tends to agree with the
information obtained from the training regression plots. Most
variability is observed in toroidal velocity and carbon ion
impurity temperature profile.

4.2. Robustness

The initial application of RTCAKENN during plasma dis-
charges was conducted in experiment #195928. In this ana-
lysis, we examine the robustness of RTCAKENN when faced
with incomplete or erroneous inputs, particularly the absence
of proper TS data.

The robustness against non-availability of accurate inputs
is crucial for achieving reliable and accurate outputs from the
RTCAKENN model. During hardware testing in between
experiments (using data from #195928 after resolving
the Thomson issues, stored into #914928), we also ran
RTCAKENN in absence of CER data, which will be presented
at the end of this section.

4.2.1. RTCAKENN without TS data. Figure 7 provides a
glimpse into the 1D inputs available to RTCAKENN for five
distinct timeslices during the experiment. Notably, the real-
time TS data was not received correctly by RTCAKENN, lead-
ing to its absence in the input data. However, the remaining
inputs were received as expected.

Despite the lack of accurate TS data, RTCAKENN per-
severed and generated outputs for each of the analyzed
timeslices. Figure 8 presents the primary equilibrium-related
outputs produced by RTCAKENN, including the pressure pro-
file and the current density profile. Surprisingly, even in the
absence of proper TS data, RTCAKENNmanaged to generate
qualitatively accurate physical profiles.

Figure 9 showcases the remaining outputs generated by
RTCAKENN, including the electron density and temperat-
ure profiles. Remarkably, RTCAKENN demonstrated consid-
erable robustness in the face of missing TS data, consist-
ently producing physically meaningful profiles. However, it
is worth noting that the neural network architecture employed
by RTCAKENN introduced some noticeable discontinuities in
certain profiles, most notably in the toroidal velocity profile.
Although an averaging method was employed to mitigate
this issue by combining the outputs of ten sub-neural net-
works, it did not entirely eliminate the discontinuities. To over-
come this limitation, the RTCAKENN architecture was sub-
sequently modified to treat all profiles as cohesive entities,
without internally separating and recombining the core and
edge profiles.

In conclusion, the application of RTCAKENN during
plasma discharge #195928 demonstrated its commendable
robustness in generating qualitatively accurate physical pro-
files, even in the absence of accurate TS data. The continuous
refinement of RTCAKENN aims to enhance its robustness and
accuracy, further strengthening its applicability in real-time
plasma diagnostics and control.
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Figure 9. An example of the remaining outputs generated by RTCAKENN during plasma discharge #195928 in the absence of proper
Thomson scattering data. RTCAKENN still provides qualitatively accurate physical profiles, including the electron density and temperature
profiles.

4.2.2. RTCAKENN without CER data. After identifying and
collaborating to resolve the TS messaging issues, hardware
tests were conducted for validation. As shown in figure 10,
indeed we did not receive any CER data. The reason for the
TS data registering as zero in the plasma core is due to the
absence of horizontal data (note that the horizontal system typ-
ically provides data at even lower normalized flux coordinates
than the so-called core system). As a result, the array entries
designated for horizontal data remain zero and are included as
such in the data used for interpolation. However, RTCAKENN
is robust against this. After all, only 33 points per profile
are fed to RTCAKENN, so in that sense the curve might be
misleading.

RTCAKENN is able to generate qualitatively accurate pres-
sure and current density profiles in the absence of CER data,
as shown in figure 11.

Similarly to the case where TS was absent, RTCAKENN
demonstrated considerable robustness in the face of missing
CER data, consistently producing physically meaningful pro-
files, as shown in figure 12.

Viewing from a standpoint of robustness, it is crucial to
recognize that the lack of data does not necessarily make the
profiles implausible or illogical. Nonetheless, our tests spe-
cifically focused on the worst-case scenario: the total absence
of TS (CER) data throughout the discharge. In practical
situations, data may be intermittently received, leading to the

11



Nucl. Fusion 64 (2024) 026006 R. Shousha et al

Figure 10. An example of the inputs available to RTCAKENN during hardware test #914928. In this scenario, we simulate the absence of
CER data.

possibility that a model could still generate reasonable profiles
for various time slices even after the data input stops. However,
when absolutely no TS (CER) data is received during the dis-
charge by a model with no memory, it becomes less clear
whether the model’s outcomes can sustain accuracy, unless the

outcome is well constrained by information embedded in other
diagnostics.

While initially assessing discharge accuracy with miss-
ing TS or CER data, we could not identify distinct pat-
terns regarding how the predictions deteriorated. For instance,
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Figure 11. An example of the outputs available to RTCAKENN during hardware test #914928. In this scenario, we simulate the absence of
CER data. Despite this limitation, RTCAKENN still provides qualitatively accurate physical profiles.

when comparing electron temperature and density between
RTCAKENN (using the model that treats the core and edge
separately) at two time-slices, where a clear change in elec-
tron density across the profile occurred, the average discrep-
ancy between the profiles at approximately 3500 ms (around
15%) was more significant than at 4000 ms (approximately
13%). No significant changes in magnitude were observed for
other time slices during manual inspection.

With RTCAKENN becoming more regularly used and col-
lecting additional time sliceswith data presence or absence, we
anticipate conducting a comprehensive sensitivity analysis to
map the impact of missing data on accuracy. This analysis will
involve exploring the duration of data absence and assessing
how effectively the model operates in the complete absence of
CER or TS data.

4.2.3. RTCAKENN with different neural network architecture.
Even though plasma profile evolution often tends to be global
by nature, we typically observe that in H-mode plasmas, the
edge region has complex patterns with steep pressure gradients
and fluctuating current density, while the core plasma has a
relatively smooth shape. Due to these different spatial patterns
and complexities governed by different physicsmechanisms in
the two regions, it is worth generating the equilibrium profiles
for each region separately by different decoder networks to see
if we can further enhance the accuracy of the model. This way
enables each decoder network for the core and edge to focus
on each dominant physical pattern.

In this section, we compare the performance of this new
prediction model with a different architecture to the existing
model of figure 1. Figure 13 illustrates the model structure
that separates the core and edge regions based on ψN = 0.8
for decoding. Panels (a)–(c) in figure 13 remain the same as
the original model, while in (d), profiles are generated for

each region using separate networks and then concatenated
to obtain the final profile. Figure 14 shows regression plots
and error distributions using this new model. Compared to
the results of the original model (figure 2), the new model
demonstrates slightly lower R values and larger σ values.
Furthermore, when examining a predicted profile for a spe-
cific target plasma, as shown in figure 15, there occurs a
discontinuity around ψN = 0.8, the point which separates
the core and edge. As the spatial gradient of the profiles
plays an important role in plasma stability analysis and con-
trol, these discontinuities in the profiles can lead to signific-
ant errors in post-analysis. Considering the potential use of
RTCAKENN, the original model structure in figure 1 is more
suitable.

4.3. Timing

Quantifying the execution time of algorithms and their con-
stituent components in the context of a production PCS poses
significant challenges due to inherent disparities between the
testing and production environments. In order to gain insights
into the temporal aspects of algorithm execution during each
PCS cycle, including potential variations, a timing metric
stored by the PCS is analyzed for each real-time function
(algorithm) running on every CPU.

In this analysis, we specifically focus on examining ten
neural networks that form RTCAKENN, while also taking
into account associated overhead tasks such as input recep-
tion, processing, and the aggregation of outputs to derive the
final results.

The results are depicted in figure 16. Two distinct bands of
execution times can be visually discerned. The initial version
of RTCAKENN, employed in discharge number #195928,
exhibited an average execution time of approximately 13 ms,
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Figure 12. An example of the remaining outputs generated by RTCAKENN during hardware test #914928 in the absence of proper CER.
RTCAKENN still provides qualitatively accurate physical profiles, including the density and toroidal velocity profiles.

with a one-sided positive variance of 0.4 ms for the worst-case
scenario.

In contrast to this, all discharges that utilized the newer
version of RTCAKENN demonstrated an average execution
time of approximately 7.7ms, typically accompanied by a one-
sided positive variance of about 0.1 ms. The worst-case scen-
ario in the first cycle exhibited a deviation of 1 millisecond.

Additionally, it is noteworthy that during all of these tests,
the execution times of the algorithms were significantly lower
than the typical cycle time of 20 ms for the CPU (here the
cycle time refers to the time a CPU can spend to complete
one full cycle of its functions–not to be confused with CPU
clock frequency, which is in the GHz range). This observation
indicates that there were no hardware or execution issues that
could potentially hinder the real-time operation of the PCS.

Furthermore, the evolution of plasma profiles typically
occurs at a slower pace compared to the execution time
of the algorithms. Similarly, the data provided by the dia-
gnostics is usually available at similar or slower execution
times. This synchronization between the execution time and
the evolution of plasma profiles, as well as the availability
of diagnostic data, ensures that the algorithmic operations
are enabled to capture and represent the dynamics of the
plasma.

Given the ample amount of ‘unused’ time within each
cycle, it is evident that there is still room for incorporat-
ing additional computational complexity to enhance the per-
formance of the algorithms. This suggests the possibility
of incorporating more sophisticated algorithms to achieve
enhanced control and analysis capabilities.
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Figure 13. Neural network architecture that separates the plasma core and edge regions during the decoding process.

Figure 14. Regression plots for the test dataset and error distributions using the trained model that separates the plasma core and edge
regions. (a) Plasma pressure, (b) current density, (c) inverse of safety factor, (d) electron density, (e) electron temperature, (f ) ion
temperature, and (g) toroidal rotation velocity.

Figure 15. Discontinuity of the q profile predicted by the new model, compared to ‘True’ value (CAKE).
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Figure 16. Execution time of complete RTCAKENN real-time function as function of time for several plasma discharges. Note that this
quantity represents the total time it takes for RTCAKENN to receive and process inputs, apply the 10 neural nets and average all outputs.

5. Discussion and conclusion

RTCAKENN has demonstrated its capability to generate real-
time reconstructions of various plasma parameters in the DIII-
D PCS, including pressure, toroidal current density, inverse
q profile, electron temperature, electron density, ion carbon
impurity temperature, and rotation profiles.

The quality of the profiles generated by RTCAKENN
closely approximates that of the offline CAKE and typically
surpasses real-time alternatives run with default settings. In
practical scenarios, default settings are often utilized unless
specific domain experts are involved.

As intended by its design, RTCAKENN has exhibited
robustness against the absence of TS or CER data, establish-
ing it as a valuable algorithm suitable for running during every
discharge as a primary diagnostic tool for control and real-time
analysis.

Currently, RTCAKENN operates efficiently on a 20 ms
CPU, with the algorithm itself executing in under 8 ms.

Overall, RTCAKENN presents a promising approach to
the development of a reliable tool that can operate effectively
during any discharge without the need for specific setups or
the availability of all diagnostics. Nevertheless, there remains
room for further improvement.

It is imperative to minimize the extent of data pre-
processing and shift the burden of interpretation onto the
neural network. Therefore, exploring the feasibility of dir-
ectly feeding RTCAKENN raw data, without resorting to lin-
ear interpolation onto a predefined ψN grid, is an active area of
investigation. However, accomplishing this task is non-trivial
due to the inherent challenges associated with the changing
ψN values associated with TS channels or CER chords as the
plasma moves. Incorporating this information into the neural
network in an explicit manner poses a significant challenge.

Expanding the training dataset in terms of its size and vari-
ability, accommodating any sign of plasma current, and align-
ing it more closely with the observations that RTCAKENN
would encounter within the PCS, are critical areas of
improvement.

Further research is warranted to determine the underlying
reasons for the observed variance in the regression plots per-
taining to ion temperature and toroidal rotation profiles gener-
ated by RTCAKENN. Notably, the core ion temperature con-
sistently exhibits a slightly higher value in RTCAKENN com-
pared to CAKE.

Considering the fact that RTCAKENN executes faster
than initially anticipated, there is an opportunity to introduce
additional computational complexity to further enhance the
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accuracy and robustness of the algorithm, albeit at the expense
of timing. However, given that certain inputs do not refresh
faster than every 20 ms and plasma profiles generally evolve
on similar or slower timescales, sacrificing a certain degree of
speed in favor of improved robustness and accuracy represents
the optimal course of action for both control and real-time ana-
lysis applications.
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Appendix. Encoding networks

Three encoder networks shown in figure 1(b) receive different
kinds of input signals to extract features in reduced dimen-
sions. In all the encoder networks, batch normalization is
applied before each hidden layer to redistribute the features,
and the ReLU activation is applied after each layer to provide
nonlinearity.

The pitch angle encoder network consists of fully connec-
ted layers. This MLP has three layers, each with 16, 8, and
4 neurons, respectively, which encodes 15 pitch angle signals
into four features. The boundary encoder network also con-
sists of three fully connected layers, each with 32, 16, and 8
neurons, respectively. This encodes the boundary coordinate
information of 16 parameters into eight features. Lastly, the
kinetic encoder network consists of two 1D convolutional lay-
ers. Each convolutional layer has 16 and 32 neurons, respect-
ively, with a kernel of size 3. After each convolutional opera-
tion, max pooling of size 2 is applied to reduce the dimension.

After the profile encoding, the reduced features are flattened
and passed through a fully connected layer of 64 neurons.

Decoding networks

The extracted input features are concatenated and passed
through the latent feature extraction network shown in
figure 1(c). The latent feature extractor has two fully connec-
ted layers, each with 128 neurons.

Lastly, from the 128 latent features, the decoding network
(figure 1(d)) reconstructs the final 1D profiles. The network
has three blocks, each operates one 1D upsampling and two 1D
convolutions sequentially. The convolutional layers has 64, 16,
32, and 7 neurons each, finally generating seven 1D profiles.
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